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SUMMARY

Focussing on applications to fluid flow phenomena, we are interested in developing dynamical system
models that are based on the discrete multivariate time series information only. A method based on
radial basis functions and linear multi-step methods is used to construct continuous nonlinear models that
approximate the original dynamical system. Information, such as the structure of the original system, is
incorporated into the models through weak constraints. The formulation of the model and its advantages
associated with modeling is described. Different examples are presented that highlight the various char-
acteristics of the model and its effectiveness in dealing with various problems encountered in fluid flow
problems. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many practical fields of engineering, there is an important need to construct dynamical systems
from observed data. This is especially true in the field of fluid dynamics where the behavior of a
fluid flow phenomenon can be understood through the use of dynamical systems. The governing
equations associated with fluid flow—the Navier–Stokes equations—are intractable in their primi-
tive form, which leads researchers to explore the dynamics of fluid flow either through experiments
or through numerical simulations.

A popular approach to make the analysis of fluid flow problems more tractable is the method of
proper orthogonal decomposition (POD). POD has long been used in the fluid dynamics community
as a tool for the identification of coherent structures [1–5]. It has also been widely used in the field
of data compression [6], signal processing applications, e.g. characterization of human faces [7, 8],
and has been proven an ideal tool when dealing with large data sets. A number of properties
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122 P. MOKHASI AND D. REMPFER

associated with POD and its application to fluids and complex dynamical systems have been
studied in detail in the work of Aubry et al. [9, 10]. POD enables us to decompose a signal that
varies in space and time into a set of basis functions that vary only in space, and a set of expansion
coefficients that vary only in time. The appeal of this approach is that, since the spatial functions
do not change in time, with known basis functions we can characterize the instantaneous state of
the velocity field based on the expansion coefficients alone. Thus, we obtain approximations to
the entire three-dimensional flow field that rely only on the information contained in an optimally
small set of expansion coefficients. This small set of expansion coefficients requires significantly,
often orders of magnitude less storage space than a straightforward collection of instantaneous
velocity fields.

When the Navier–Stokes equations are projected onto the POD basis functions, we obtain
evolution equations for the POD temporal coefficients using the Galerkin method [11]. The Galerkin
model provides the evolution equations in the form of a quadratic system of ordinary differential
equations (ODEs), which in principle can be solved numerically. However, in the Galerkin model,
the appropriate modeling of the pressure terms and the POD truncation become important. The work
of Rempfer [12, 13], Noack et al. [14–16], Sirisup and Karniadakis [17], and others highlight these
problems and suggest means of overcoming them. Perret et al. [18] propose direct computation of
the Galerkin coefficients using the least-squares method, while Galletti et al. [19] favor optimization
methods to compute the correct coefficients. Similar methods have also been presented in the work
of Couplet et al. [20]. However, these methods become computationally expensive when dealing
with very high numbers of modes.

The problem of obtaining the evolution equations for the POD temporal coefficients can also
be viewed from the perspective of parameter optimization. Since the Navier–Stokes equations
explicitly dictate the form of the evolution equation, one can then look for methods to compute the
coefficients in the system of differential equations. Parameter estimation and system identification
have been studied and developed since the early 50s. The problem of parameter estimation can be
described as follows. Given a system of ODEs as

d�k
dt

= Fk(f,�), k=1,2, . . . ,N , t ∈[0,T ], f(t)∈Rd

f(t0) = f0
�m(t j ) = �m(t j )

(1)

where �m are the observed discrete time series and � represent the linear and quadratic coefficients
that need to be computed. This leads to an optimization problem given by

�̂=argmin
�

{
P∑
j=1

N∑
m=1

(�m(t j )−�m(t j ))
2

}
subject to the constraint

d�k
dt

=Fk(f,�), f(t0)=f0
The above problem is generally solved using the nonlinear least-squares (NLS) approach. The
papers of Bard [21] and Benson [22] describe examples of some of the earlier work in this area.
Monte Carlo methods have also been used to tackle these problems and can be seen in the work of
Carlin et al. [23] and Bremer and Kaplan [24], to name a few. Perhaps the main drawback of the NLS
method is that it is computationally expensive and can only be used for very simple systems. There
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have been attempts to overcome these drawbacks through the method of contractive mapping [25].
Shooting methods have also been used as a popular and robust tool as demonstrated in the work
by Muller and Timmer [26], Baake et al. [27], Bock [28] and Voss et al. [29], among others.
Multiple shooting methods have been proven to be very robust and capable of handling partial
data as well as noise. However, the method still remains computationally expensive. A different,
more promising approach to parameter estimation comes in the form of basis function expansions
for boundary value and distributed data problems. The use of spline bases for dynamic data fitting
problems was demonstrated by Benson [22] and later by Varah [30]. Varah suggested to first fit
the available data using data smoothing methods, and then use the time derivative approximations
obtained from the fit to solve a least-squares problem, which maximizes the measure of fit between
d�k/dt and Fk(f,�) with respect to the parameters �. These methods were further refined by
Ramsay et al. [31], and Poyton et al. [32] by using principle differential analysis as first described
by Ramsay [33]. The method is again able to handle noisy and incomplete data and overcomes
some of the computational drawbacks associated with the previous methods i.e. multiple shooting.

Our objective in this paper is to demonstrate a new non-iterative method based on radial basis
functions and linear multi-step methods to generate a dynamical system from the multivariate
time series of the POD expansion coefficients. This is done by describing the nonlinear term
in the system of ODEs (in our case the quadratic term) with radial basis functions (RBF). We
then weakly enforce the quadratic form of the differential equations through constraints. Such an
approach allows us not only to obtain a nonlinear dynamical system, but also to approximate the
linear and quadratic coefficients of the original dynamical system. For our case, the POD analysis
provides us with a sample time series of the POD coefficients, which are then used to construct
the dynamical system. The challenge associated with the proposed method lies in the fact that
the dynamical system is often extremely high-dimensional whereas the sample time series is quite
small. Furthermore, the data might be non-equally spaced and is of course discrete in nature.

RBF find their primary use in the field of scattered data interpolation and methods associated
with them are often classified under the category of mesh-free methods in numerical analysis.
The use of mesh-free methods for interpolation and approximation can be seen in the early works
of Shepard [34], Hardy [35] and others. The main power of RBF comes from the fact that this
method is able to handle high-dimensional data without incurring any additional computational
cost [36], and it has been used in a variety of different fields. For example, RBF have been used
in solving partial differential equations [37–40]. In the statistics literature, one can find a very
close connection between kernel ridge regression [41–43] and RBF. Similarly, in the field of
geo-statistics, one can find a similar connection to the method of Kriging [44] for interpolation.
A detailed account of the use of RBF and their application is given in the book by Fasshauer
[36]. RBF have also been called neural networks and have been introduced as such by Darken and
Daley in 1989. The primary goal of such neural networks is to perform some form of nonlinear
regression analysis. Examples of applications for prediction analysis in general can be seen in the
work of Chng et al. [45], Casdagli [46, 47], Broomhead and Lowe [48], and Potts and Broomhead
[49], to name a few. Applications also include the nonlinear prediction of chaotic time series as
in the work of Chng et al. [45], Cowper et al. [50], Casdgali [47], Ni and Simons [51] and Mann
and McLaughlin [52], among others. However, in most cases, the RBF networks are treated like a
‘black box’ and very little information, if any, about the original system can be inferred from the
RBF networks.

Linear multi-step methods are a means of numerically integrating systems of ODEs. Details of
the general linear multi-step method have long been established and we refer the reader to standard
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124 P. MOKHASI AND D. REMPFER

numerical analysis textbooks, such as Kincaid and Cheney [53] for details. The key idea of using
multi-step methods is to avoid the approximation of the time derivative of the coefficients. We will
instead use multi-step methods to directly approximate the continuous dynamical system.

The content of the paper is organized as follows. We first elaborate on the method of POD and
the construction of the evolution equation associated with POD in Section 2. In Section 3, the basic
equations associated with RBF are discussed. Sections 4 and 5 discuss the specifics associated
with the development of the RBF evolution model and the various aspects associated with it. The
method is then validated through the use of four examples in Section 6 followed by conclusions
and future work in Section 7.

2. PROPER ORTHOGONAL DECOMPOSITION

The method of POD is a technique for decomposing a spatio-temporal signal into a set of orthogonal
spatial basis functions and a set of temporal coefficients. This technique has found considerable
success in the field of fluid mechanics for understanding turbulent flows and identification of
coherent structures. With respect to our motivation, the method provides a means for fast compu-
tation of the evolution of fluid flow in a complex system. The basic decomposition of POD is
given by

u(x, t)=∑
k

�k(t)wk(x) (2)

The basis functions are computed via a minimization problem, which leads to an integral eigenvalue
relation ∫

D
R(x,x′)w(x′)dx′ =ϑw(x) (3)

where

R(x,x′)= 1

T

∫
u(x, t)u(x′, t)dt (4)

Thus, R(x,x′) is the two-point auto correlation matrix, and the basis functions w(x) are the
eigenvectors of the correlation matrix. However, when one has a domain with a large number of
spatial points, the above approach for computing the basis functions becomes undesirable due to the
computational constraints. Instead, we use the ‘method of snapshots’ as developed by Sirovich [5]
to convert the spatial integral problem into a temporal problem. A correlation matrix is computed as

Ci j = 1

M

∫
D
uEN(x, ti ) ·uEN(x, t j )dx (5)

where M is the number of snapshots available in the original ensemble of data and uEN represents
the velocity snapshots that form the ensemble. Let vki be the i th element of the eigenvector vk

corresponding to the eigenvalue ϑk , k=1,2,3, . . . ,M of the correlation matrix C. Let us define
�ki as

�ki := vki√
M
∑

m,r vkmvkr Cmr

(6)
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NONLINEAR SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTIONS 125

Based on the above equations, one can then compute the POD basis functions as

wk(x)=
M∑
i=1

�kiuEN(x, ti ) (7)

and the temporal coefficients as

�k(tp)=
∫
D
u(x, tp)wk(x)dx=M

M∑
i=1

�ki C̃ip (8)

where

C̃ip =
∫
D
uEN(x, ti )u(x, tp)dx (9)

One can also show that

M∑
r=1

�ENk (tr )�mr =�km (10)

The terms �ENk (tr )=�ENkr and uEN(x, tr )=uENr are the POD coefficients and velocity fields within the
ensemble, respectively. When all the M modes are considered, the matrix with elements �ENkr is the
inverse of �rm . We note that the POD coefficients within the ensemble �EN can be easily computed
by substituting C̃ in (8) with C as given in (5). However, to compute POD coefficients outside
the ensemble, one must perform the spatial integration of the velocity fields with the appropriate
basis functions w(x), as given in (8). From the decomposition, the following property also holds:∫

D
wi (x)w j (x)dx=�i j (11)

1

T

∫ T

0
�i (t)� j (t)dt=〈�i (t)� j (t)〉=ϑi�i j (12)

where ϑi are the eigenvalues associated with the eigenvectors v. The properties (11) and (12)
prompted the use of the term ‘bi-orthogonal decomposition’ in Aubry et al. [9]. The method of
snapshots reduces the computational complexity significantly. The spectral convergence properties
ensure that the basis functions are optimal and converge faster than any other set of functions
that could be constructed in the Hilbert space. Furthermore, as seen in (7), all the basis functions
are constructed as linear superpositions of the ensemble snapshots. Therefore, the basis functions
automatically satisfy the continuity equation, no-slip and periodic boundary conditions (if such
conditions apply). The conditions of mass conservation and no-slip at solid walls are of particular
importance when dealing with flows around complex geometries, such as the ones typical for an
urban setting.

At this point it becomes apparent that a good set of POD basis functions is one that captures a
variety of flow phenomena with sufficient accuracy. In order to achieve this, a common practice
is to run numerical simulations for the domain of interest and obtain sample snapshots of the 3D
velocity fields that span a variety of flow states, or span a large interval of time. Generally, these
3D velocity field snapshots are obtained from numerical simulations with sufficient spatial and
temporal resolution. When one is dealing with flow cases that exhibit diverse flow phenomena, it
becomes important that the POD decomposition be able to capture all of them. To ensure this, the
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126 P. MOKHASI AND D. REMPFER

initial ensemble of velocity snapshots should contain velocity fields that correspond to different
conditions. The general rule of thumb is to select snapshots that span the range of several integral
time scales of the flow.

In order to construct an evolution equation for the POD coefficients �(t), the Galerkin approach
may be used. In this method, the POD basis functions are projected onto the incompressible
Navier–Stokes equations and integrated in space. The Navier–Stokes equations are given by

�u
�t

=−1

�
∇ p−(u·∇)u+�∇2u (13)

The continuity equation is not considered here because it is identically satisfied by the POD basis
functions wk(x). If the velocity expansion is given by

u(x, t)=U(x)+
N∑

k=1
�k(t)wk(x) (14)

then projecting the Navier–Stokes equations onto the basis functions wk(x) and integrating over
the domain results in a set of ODEs of the form

d�k
dt

=
N∑
i=1

N∑
j=1

Aki j�i� j +
N∑
i=1

Bki�i +Ck (15)

where

Aki j =−
∫
D
wk ·(wi ·∇w j )dx+Qki j (16)

Bki =�
∫
D
wk ·∇2wi dx−

∫
D
wk ·(U ·∇wi )dx−

∫
D
wk ·(wi ·∇U)dx (17)

Ck =�
∫
D
wk ·∇2Udx−

∫
D
wk ·(U ·∇U)dx (18)

The term Aki j comes from the convective term in the Navier–Stokes equation and the term Q
corresponds to the pressure term. The term Bki comes from the diffusion term. Now, Equation (15)
is an autonomous system of equations that can be solved if the proper initial conditions are provided
and if we have a complete set of basis functions. However, since the objective is to compute a
low-dimensional model, only the low-order POD modes (which contain the majority of the energy)
are used. This leads to a truncation of the set of POD basis functions, and the effect of truncation
(or unresolved modes) must be modeled.

There exist a number of ways this could be achieved, some of which are discussed in [12, 14–17].
Furthermore, one must also find an appropriate means of modeling the pressure term. One method
is to include the unresolved pressure term as part of the unresolved truncated modes and find a
model that stabilizes the system and follows the dynamics correctly. The other approach is based
on the fact that the pressure term is a nonlinear function of the velocity gradient as governed by
the pressure-Poisson equation and therefore is modeled in the quadratic term. It should be noted
that the second scenario is computationally expensive and not always used. We may therefore be
interested in an alternative approach to compute the Galerkin coefficients.

One possible method to estimate the coefficients Aki j and Bki in (15) is to obtain a system of
linear equations for the unknown coefficients. If the system of ODEs consists of N equations, then
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there exists (N+2)(N+1)/2 number of unknowns for each differential equation. Therefore, in
order to get reliable estimates of the coefficients one requires P>(N+2)(N+1)/2, where P is the
number of POD coefficients available from the POD analysis, so that we have an over-determined
system of equations, which can be solved using a least-squares approach. Such a constraint,
therefore, only enables us to approximate dynamical systems of low dimensions. Furthermore, this
method also requires time derivatives df/dt at the time steps tp along with the coefficients f(tp).
Other options include optimization methods and/or multiple shooting methods to estimate the
coefficients. However, for high-dimensional systems, almost any optimization scheme is bound to
be computationally expensive. Interestingly, Lorang et al. [54] showed that one does not require the
such a large amount of data to compute the coefficients giving an indication that the quadratic term
could in essence be represented by a fewer parameter terms than the conventional (N )(N+1)/2.

As an alternative means for overcoming some of the problems associated with the parameter
estimation in (15), we abandon the conventional form assumed in (15) and use RBF to account for
the nonlinear behavior of the system. Therefore, the right-hand side of (15) is now represented as

d�k
dt

=
N∑

m=1
Rkm�m+

N∑
j=1

	k j�(‖c j −f‖2), k=1,2, . . . ,N (19)

whereR and 	 are coefficient matrices of the system that need to be computed. The form suggested
in (19) is similar to a neural network, which had been used successfully in modeling nonlinear
time series analysis and has been demonstrated as such in [54]. The RBF-evolution model consists
of two parts, the linear part and the nonlinear part. The quadratic term has two major functions as
pointed out by Noack et al. [55]. It acts like a energy sink on the high-frequency dynamics and
for the low-frequency dynamics acts like a Reynolds stress component. It is therefore natural to
find a substitute for the quadratic term in terms of a simpler nonlinear model. The various terms
in (19) are as follows:

1. The term � is called a radial basic functions and is chosen a-priori from a family of positive
definite functions.

2. The term c∈RN×1 are called ‘centers’ and have the same dimension as the POD coefficients
f. These centers are chosen to enforce certain properties, details of which are described in
the following section.

3. R and 	 are a set of coefficients that need to be determined.

By assuming the form in (19), we immediately eliminate one major issue, when the number
of parameters to be computed may be higher than the number of data points available. The
RBF model (19), in contrast, leads to a square system of equations that can be solved uniquely.
Before going into the details of the RBF-evolution model, we will look at the basic equations and
formulations associated with RBF.

3. RADIAL BASIS FUNCTIONS

In order to develop an evolution model based on RBF, we first consider the equations involved in
the construction of the model. The RBF model always takes the form

g(f)=∑
j

	 j�(‖c j −f‖) (20)
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where g(f) is an unknown function of f=[�1,�2, . . . ,�n]. However, the numerical values of g
at different f’s are known. The 	 j are coefficients that need to be computed, c j are called the
centers and �(r) are the RBF, which are known. The RBF modeling procedure thus corresponds
to a surface approximation in Rn . For the purpose of RBF models, we have f j available at j
different locations, i.e. f j =[�1(t j ),�2(t j ), . . . ,�n(t j )], and we know the function values g(f j ) at
f j . The radial functions are chosen positive definite. This property of the basis functions leads to
a well-defined interpolation problem. Common examples of such functions are

� j (x)=e(−
2‖x−c j‖22) Gaussian function

� j (x)=
√
1+
2‖x−c j‖22 multi-quadric function

� j (x)= 1√
1+
2‖x−c j‖22

inverse multi-quadric function

The term 
 in the functions is called the scaling (or shape) parameter that governs how narrow
or wide the radial function should be. The term ‖x−c j‖ is the Euclidian distance between the
centers c j and the data points x.

The interpolation problem is now reduced to computing the coefficients 	 j and the shape
parameter 
. Identification of the coefficients and shape parameter would ideally lead to a nonlinear
optimization problem. However, it is general practice to assume a constant shape parameter for all
the basis functions, which then leads to a system of linear equations given by

g(fi )=∑
j

	 j�(‖c j −fi‖)=�i j	 j (21)

By choosing the centers c j to be equal to the data locations f j , the resulting matrix is a symmetric
positive-definite matrix, which has an inverse. It should also be noted that the positive definiteness
of the matrix is not affected by the value of the shape parameter 
. Therefore, the interpolation
problem is naturally well defined, and the coefficients 	 j are computed as

	 j =�−1
i j g(f

i ) (22)

This completes the RBF modeling procedure. The optimal shape parameter 
 is computed using
a cross-validation procedure and is generally problem dependent. We discuss the cross validation
procedure in detail in the sections below.

4. RBF EVOLUTION MODEL

We now discuss two RBF-based formulations for constructing evolution models for the POD
coefficients. We may envision two possible scenarios. In the first scenario, we are given the POD
coefficients f(tp) and their time derivatives df/dt . In the second scenario, we are given pairs of
data points i.e. we are given f(tp) and f(tp+�t), where p=1,2, . . . , P . Of course, one could argue
that the second scenario could be converted to the first scenario by simply approximating the time
derivative using the pairs of points. However, by approximating the time derivative as

df

dt
≈ f(t+�t)−f(t)

�t
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NONLINEAR SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTIONS 129

one may introduce an approximation error into the model that cannot be easily removed. During the
RBF modeling procedure, the error due to the approximations, therefore, may create a sub-optimal
model whose behavior is not indicative of the true dynamical system. In the following subsections,
we describe a method for the construction of the evolution models for the two scenarios.

4.1. Evolution model when time derivatives are given

We first address the case when the POD coefficients f(tp) and their time derivative df/dt are
given. For this case, we are looking to construct the original dynamical system (15). The RBF
approximation to the time derivatives is written as

Fk ≡ d�k
dt

=
N∑

m=1
Rkm�m+

M∑
j=1

	k j�(‖c j −f‖2), k=1,2, . . . ,N (23)

The first step is to choose the appropriate centers c j for the model. RBF theory recommends that
using the centers equal to the data sites leads to a well-posed problem. Therefore, we set the centers
c j equal to the POD coefficients obtained from the POD analysis. Thus, c j =fEN(t j ), j =1,2, . . . , P
where P is the number of POD coefficients available.

Now, within this scenario, one could approach the RBF modeling problem in two ways. The
first approach is to apply the standard RBF method to construct a system of linear equations
for computing the coefficients R and 	. Note that for each k in (23), one has P+N number of
unknowns. An additional set of N equations is required to make the system unique. This is done
by enforcing additional constraints given by

j=P∑
j=1

�ENk (t j )	k j =0, k=1,2, . . . ,N (24)

Such a constraint is considered natural when one looks to model a linear function. The main objec-
tive of the above N equations is to provide a set of linearly independent functions. Furthermore,
from a polynomial interpolation perspective, the conditions (24) guarantee polynomial precision
if the underlying function Fk in (23) is linear in nature. Of course, it should be recognized that
the choice of the additional N equations is somewhat arbitrary and one could, in principle, use
any other set of independent functions. This idea is explored in the later part of this section. Now,
based on the constraints (24), the RBF modeling problem can be written in matrix-vector form as[

A B

O C

][
R

	

]
=
[
H

O

]
(25)

where the elements of the sub-matrices are as follows:

Apm =�m(tp), m=1,2, . . . ,N , p=1,2, . . . , P (26)

Bpj =�(‖fEN(t j )−fEN(tp)‖2), j =1,2, . . . , P, p=1,2, . . . , P (27)
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Cml =�ENm (tl), m=1,2, . . . ,N , l=1,2, . . . , P (28)

Omn =0, m=1,2, . . . ,N , n=1,2, . . . ,N (29)

Hpk =
(
d�k
dt

)
t=tp

, p=1,2, . . . , P, k=1,2, . . . ,N (30)

We first note that this method produce a perfectly valid continuous RBF evolution model.
However, when one knows the form of the original dynamical system that is being modeled, then
one can incorporate that information into the RBF modeling procedure thereby producing better
results. In our case, we are interested in using RBF to model systems of ODEs that have a quadratic
form. In order to incorporate this information, we return to (15). We now rewrite the system of
ODEs (15) into a system of partial differential equations. To do this, we differentiate (15) with
respect to �m, which gives

�Fk
��m

= Bkm+
N∑

r=1
(Akrm+Akmr )�r

(
�Fk
��m

)
f=0

= Bkm

Differentiating again with respect to �l gives(
�2Fk

��m��l

)
f=0

=(Aklm+Akml)

We now write the Taylor series of Fk(f) about the origin, i.e. about f=0 which gives

F p
k =Fk(�=0)

0+
N∑

n=1

⎡⎣�pn

(
�Fk
��n

)
f=0

+ 1

2
(�pn )2

(
�2Fk
��2n

)
f=0

⎤⎦+
N∑
i=1

N∑
j=i+1

(�pi �pj )

(
�2Fk

��i�� j

)
f=0

(31)

where F p
k =Fk(f

p), fp =f(tp) and Fk(f=0)=0. Substituting (23) into the right-hand side of (31)
gives

F p
k =

N∑
r=1

Rkr�
p
r +

M∑
l=1

	klQ
p
l (32)

where

Q
p
l = �(‖fENl ‖)+

N∑
k=1

⎡⎣�pk

(
��l

��k

)
fn=0

+ 1

2
(�pk )2

(
�2�l

��2k

)
fn=0

⎤⎦
+

N∑
i=1

N∑
j=i+1

(�pi �pj )

(
�2�l

��i�� j

)
fn=0

(33)
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with �l =�(‖fENl −f‖2), where fENl :=fEN(tl). Therefore, the sub-matrix B in (25) is now replaced
with Q, i.e. Bpj =Q

p
j . Once the coefficients R and 	 are computed from the system of linear

equations (25), the coefficients associated with the quadratic system of ODEs (15) can be calcu-
lated as

Bkj =∑
l

	kl

⎛⎝Rl j +
(

��l

�� j

)
fn=0

⎞⎠
Aki j =∑

l
	kl

(
�2�l

��i�� j

)
fn=0

, i=1,2, . . . ,N , j = i, i+1, . . . ,N

(34)

Once the coefficients are computed, one can use the original quadratic form of the dynamical
simulation for performing numerical integration. At this point it is important to note that if one
wishes to use the RBF form of the dynamical system for performing integration, then one must
use the form given in (32) rather than (23). This is because the coefficients in the RBF system are
constructed using the form in (33). It is also important to note that this procedure also gives us an
algorithm for parameter estimation using RBF.

4.2. Evolution model when data pairs are given

In this subsection we outline the procedure for constructing a RBF evolution model when pairs
of POD coefficients, rather than time derivatives, are known. In other words, we are given f(tp),
f(tp+�t), p=1,2, . . . , P . As mentioned earlier, rather than trying to find a first-order time derivative
from the data pairs, we construct a discrete RBF evolution map and then from this map construct
a continuous dynamical model using linear multi-step methods.

The equations associated with the construction of the discrete RBF map remain largely
unchanged from the previous cases (when time derivatives are known). The RBF discrete map
takes the form

�k(t+�t)=
N∑
j=1

Mk j� j +
M∑

m=1
�km�(‖cm−f(t)‖2), k=1,2, . . . ,N (35)

We now wish to compute the terms M and � in the above equation. As before, the centers c j are
chosen to be the available data sites and therefore are cm =fEN(tm). In matrix-vector form, the
system of equations to be solved is then[

A B

O C

][
M

�

]
=
[
H

O

]
(36)

where the elements of the various sub-matrices are

Apm =�m(tp), m=1,2, . . . ,N , p=1,2, . . . , P (37)

Bpj =�(‖fEN(t j )−fEN(tp)‖2), j =1,2, . . . , P, p=1,2, . . . , P (38)

Cml =�ENm (tl), m=1,2, . . . ,N , l=1,2, . . . , P (39)

Omn =0, m=1,2, . . . ,N , n=1,2, . . . ,N (40)

Hpk =�k(tp+�t), p=1,2, . . . , P, k=1,2, . . . ,N (41)
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We now address the question of constructing a continuous dynamical system using a discrete
RBF evolution map. To achieve this objective, we make use of linear multi-step methods. Linear
multi-step methods are means of numerically integrating systems of ODEs. The basic formulation
of a linear multi-step method relies on the principle that the system of ODEs can be solved by
integrating the time derivatives to give∫ tp+�t

tp

d�k
dt

dt=�k(tp+�t)−�k(tp) (42)

and then

�k(tp+�t)=�k(tp)+
∫ tp+�t

tp
Fk(f(�))d� (43)

The integral on the right-hand side above is approximated using a numerical quadrature scheme,
which results in a general expression given by

�k(tp+�t)=�k(tp)+
s=b∑
s=a

Ws Fk(f(tp+s ·�t)) (44)

Depending on the index values a and b, one can form either implicit or explicit multi-step methods.
The integration weights Ws may be computed from the requirement that the approximation to the
integrand ∫ tp+�t

tp
Fk(f(�))d�≈

s=b∑
s=a

Ws Fk(f(tp+s ·�t)) (45)

be exact whenever the integrand is a polynomial of a certain order. By setting a=−3 and b=1
and requiring that the integrand is approximated by a fifth-order polynomial leads to a popular
implicit formula known as the Adams–Moulton formula and is given by

�k(tp+�t)=�k(tp)+
s=1∑
s=−3

WsFk(f(tp+s ·�t)), k=1,2, . . . ,N (46)

where

W1= 251�t

720
, W0= 646�t

720
, W−1=−246�t

720
, W−2= 106�t

720
, W−3=−19�t

720
(47)

For the purpose of this paper, the Adams–Moulton (A-M) formula is used to construct the contin-
uous dynamical system. This formula is chosen because one can show that the method satisfies the
conditions of stability and consistency. The (A-M) formula can be formally shown to be strongly
stable, and the higher order A-M scheme, as the one used for this paper, could to use for stiff
equations. It should be noted here that the choice of the multi-step method is not critical as long
as it satisfies the stability and consistency conditions. The use of Runge–Kutta schemes is not
considered feasible here because the use of the RK schemes would result in a system of nonlinear
equations, which must be solved. Multi-step methods on the other hand does not have such a
constraint.

Note that for the case considered here, the POD coefficients are available only as pairs of
coefficients. In order to compute the continuous dynamical system using the Adams–Moulton
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formula, one requires the POD coefficients at a few extra time steps as well, namely at time
tp−�t , tp−2�t , tp−3�t which are unknown for our case. However, one can compute the POD
coefficients at the past time steps using the discrete RBF map. The procedure is:

1. Using (35), recursively find the POD coefficients f(tp+2�t), f(tp+3�t), f(tp+4�t),
p=1,2, . . . , P , where P is the number of data pairs available.

2. The centers c j are set equal to f(t j ), where j =1,2, . . . , P.

3. The RBF evolution form is now chosen as given in (23).
4. The RBF form of Fk is now substituted into (46). This results in a system of equations that

can be solved for the unknown RBF coefficients. The resulting RBF model will now be a
continuous dynamical model.

Substitution of the RBF form (23) in (46) gives

�k(tp+�t)−�k(tp) =
N∑

m=1
R̂km

(
r=1∑
r=−3

Wr �m(tp+r ·�t)
)

+
M∑
j=1

	̂k j

(
r=1∑
r=−3

Wr �(‖c j −f(tp+r ·�t)‖2)
)

(48)

where

W1= 251�t

720
, W0= 646�t

720
, W−1=−246�t

720
, W−2= 106�t

720
, W−3=−19�t

720

To complete the RBF modeling procedure, we require an additional N equations. As outlined in
the earlier procedure, a possible set of N linear equations can be written as

j=P∑
j=1

�ENk (t j )̂	k j =0, k=1,2, . . . ,N (49)

These constraints can be considered a natural choice if the surface being approximated has a linear
form. However, if one intends to enforce a constraint that the model should imitate a quadratic
dynamical system, then one can do so by enforcing it as a weak constraint, that can be obtained by
multiplying both sides of (32) with �m(tp) and integrating/summing over time tp, p=1,2, . . . , P

0=
j=P∑
j=1

	̂k j 〈Qp
j −�(‖c j −f(tp)‖2),�m(tp)〉︸ ︷︷ ︸

C jm

, m=1,2, . . . ,N (50)

where 〈., .〉 denotes integration over time and Qp
j follows from (33). It is important to note that (50)

is identical to 〈
�k,

d�k
dt

〉
=

N∑
i=1

N∑
j=1

Aki j 〈�k,�i� j 〉+
N∑
l=1

Bkl〈�k,�l〉 (51)

The left-hand side of the above equation represents the rate of change of kinetic energy. The change
in kinetic energy is due to diadic and triadic interactions between the different POD coefficients.
The details of such interactions have been elaborated in [12, 16, 55] to name a few. It is interesting
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to note that a form such as (51) is used to construct eddy-viscosity models, as done in [12] so as
to stabilize the original dynamical system.

Now using (48) and (50) gives us P equations for P unknowns. Written in matrix-vector form
we have [

A B

O C

][
R̂

	̂

]
=
[
H

O

]
(52)

where the elements of the sub-matrices are

Apm =
r=1∑
r=−3

Wr �m(tp+r ·�t), m=1,2, . . . ,N , p=1,2, . . . , P (53)

Bpj =
r=1∑
r=−3

Wr �(‖c j −f(tp+r ·�t)‖2), j =1,2, . . . , P, p=1,2, . . . , P (54)

Cml =
P∑

p=1
�m(tp)(Q

p
l −�(‖cl −f(tp)‖2)), m=1,2, . . . ,N , l=1,2, . . . , P (55)

Omn =0, m=1,2, . . . ,N , n=1,2, . . . ,N (56)

Hpk =�k(tp+�t)−�k(tp), p=1,2, . . . , P, k=1,2, . . . ,N (57)

5. SELECTION OF SCALING PARAMETER

As mentioned in the previous section, in order to uniquely define the problem of approximation
using RBF, one must specify two important parameters. The first parameter is the location of the
centers. This problem is addressed by making the location of the centers equal to the location
of the data sites. The second parameter is the scaling parameter and it is intricately connected
to the accuracy of the approximation. The scaling parameter 
 is a scalar term that determines
the width of the basic function. The underlying principle of the scaling parameter selection is to
use a leave-one-out-cross validation (LOOCV) procedure. In the statistics literature, this method
is also called predictive sum of squares (PRESS). Rippa [56] formulated the LOOCV procedure
specifically for RBF and we use the equations developed in [56] for our case.

As seen in the previous section, we considered two different cases for which RBF evolution
models could be generated. The first case assumed that the time derivatives of the POD coefficients
along with the coefficients were available. The second case assumed that pairs of POD coefficients,
separated by time increment �t , were known. Though both methods use the LOOCV criteria to
compute the ‘optimal’ scaling parameter, the cost function to be minimized is different for the two
cases. We now elaborate on the cost functions to be minimized for the two cases.

5.1. Cost function for when time derivatives are given

The cost function for this case directly reflects on the way, the RBF models are constructed. As
discussed in the previous section, for the case when the time derivatives are given we form a RBF
model by approximating the system of ODEs as a system of PDEs using a Taylor series expansion.
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Therefore, we look for a cost function that reflects the property that the RBF is trying to model a
partial differential equation. In order to find the optimal scaling parameter for this case, we first
introduce the method for computing these parameters when one wishes to solve partial differential
equations using RBF. This method has been elaborated on in detail in [57]. We first discuss the
main points, in general, and then apply it to our case at the end.

Consider a solution f to a differential equation with a differential operator L given by

f (x)=
N∑
j=1

	 j � j (‖a j −x‖2), x∈�⊂Rs (58)

where f is a scalar and a are the centers. Applying the differential operator on the above expansion
gives

L f (x)=
N∑
j=1

	 j L� j (‖a j −x‖2) (59)

If we now assume that the differential equation must be satisfied exactly at the collocation points xi ,
then we have

L f (xi )=
N∑
j=1

	 j L� j (‖a j −xi‖2) (60)

Written in matrix-vector form, the above equations become

L f =AL 	

=ALA−1︸ ︷︷ ︸
D

f (61)

where Ai j =� j (xi )=�(‖a j −xi‖,
) and AL=L� j (‖a j −xi‖2,
). The term D can be viewed
as the discretized version of the differential operator. It is important to note that the differential
operator L operates only on x. Now

D=ALA−1 (62)

ADT=AT
L (63)

where the superscript T denotes the matrix transpose. The objective now is to find the optimal
scaling parameter 
 such that (63) is as accurate as possible. The cost function that achieves this
is given as

C(
)=
∥∥∥∥∥
∑

j=1
∑

m=1A
−1
km(AT

L)mj

A−1
kk

∥∥∥∥∥ (64)

This ends construction of the cost function required that needs to be minimized in order to find
the optimal scaling parameter 
 when one wishes to solve a differential equation using an RBF
expansion as given in (58).
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In order to make the cost function suitable for our purposes, we need to find the appropriate
differential operator. To do this, we first recall that the quadratic system of ODEs in (31) can be
written in a partial differential form as

0=Fk(f)+
N∑

k=1

[
1

2
(�k)

2 �2Fk
��2k

−�k
�Fk
��k

]
+

N∑
i=1

N∑
j=i+1

(�i� j )
�2Fk

��i�� j
(65)

Therefore, the appropriate differential operator for our case is found to be

L=1+
N∑

k=1

[
1

2
(�k)

2 �2

��2k
−�k

�
��k

]
+

N∑
i=1

N∑
j=i+1

(�i� j )
�2

��i�� j
(66)

and the term AL in (64) has elements

(AL)i j =L�(‖c j −f‖)|f=fi (67)

It should be noted that this procedure also results in a single scaling parameter 
 for the entire
system of differential equations. This method, in some sense, weakly enforces the condition that
the underlying dynamical system that is being modeled is quadratic in nature.

5.2. Cost function when pairs of coefficients are given

To formulate the cost function for this case, we again turn to the method in which the RBF procedure
was used to model the dynamical system. Referring back to the previous section associated with the
case when pairs of coefficients are given, we see that the RBF model now reflects more toward a
standard multivariate surface approximation problem. In this case, the surface being approximated
is the manifold that lies on the N -dimensional state space. For the standard interpolation problem of

g(x)=
N∑
j=1

	 j � j (x)

the cost function is given by

C(
)=
∥∥∥∥∥ Â−1

km(
)gm

Â−1
kk (
)

∥∥∥∥∥ (68)

where

Âkm =�(‖ck−fm‖,
)
and gm =g(xm). However, for our case, as seen in (36) and (52), we have an additional linear
term in the RBF approximation, which must also be taken into account. Specifically, the system
of equations (in matrix-vector form) is[

A B(
)

O C

][
R̂

	̂

]
=
[
g

O

]

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:121–162
DOI: 10.1002/fld



NONLINEAR SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTIONS 137

Therefore, the modified cost function for the above case is given by

C(
)=
∥∥∥∥∥
∑

m
∑

l B
−1
km (
)Gml(
)gl

B−1
kk (
)

∥∥∥∥∥ (69)

where

G(
)=I−A(CB−1(
)A)−1(CB−1(
)) (70)

where I is an identity matrix with same size as B. The matrix G is obtained by eliminating the
set of equations associated with C and computing R̂ in terms of g only.

6. RESULTS AND DISCUSSION

We now present four different examples to demonstrate the effectiveness of the RBF models. The
3D Lorenz model, the 9D Lorenz model, a 5D nonlinear model and the Kuramoto–Sivashinsky
(KS) equation are considered. The first two examples are used to demonstrate the use of RBF
evolution models for quadratic systems of ODEs. The third example is used to demonstrate the
flexibility of our RBF approach to model general nonlinear dynamical systems. As a final example,
we use a spatio-temporal system to demonstrate the use of the RBF models to estimate the evolution
of a spatio-temporal phenomenon.

As mentioned in the previous section, we explore the use of four different types of RBF
evolution models depending on the type of input information available to us. If pairs of solution
snapshots are given at discrete time steps, then we construct a discrete RBF evolution map and
based on it construct an approximation to the original dynamical system. If time derivatives
of the solution along with the snapshots themselves are known at discrete locations, then two
different RBF evolution models are constructed. These models are continuous in nature. The
first model, in principle, can be used to describe any nonlinear dynamical system while the
second model focuses on the case when the original dynamical system has a quadratic polynomial
form.

Before looking at the RBF models, we first describe the various examples that are used in this
section. To facilitate the explanation of the RBF evolution models, we define a ‘snapshot’ as the
solution of the dynamical system at a certain instance in time t . A single snapshot at time t consists
of two separate pieces of information, namely, the solution at time t and the solution at time t+�t
or the time derivative at time t (depending on the case we are examining). A ‘database’ is referred
to as a collection of snapshots that is used to construct the RBF evolution model. We further
classify the database into ‘database A’ and ‘database B’. The snapshots in database A consist of the
solution at time tn and at time tn+�t , n=1,2, . . . ,N . The snapshots in database B consist of the
solution and its time derivative. The snapshots within the database are generally taken randomly
from within a time range. The specifics of the number of snapshots within a database vary for
different examples and are given when explaining the examples below. The details of the four

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:121–162
DOI: 10.1002/fld



138 P. MOKHASI AND D. REMPFER

different dynamical systems are as follows:

• The 3D Lorenz model. The dynamical system is given by

ẋ1 = (x2−x1)

ẋ2 = −x2−x1x3+�x1

ẋ3 = x1x2−�x3

(71)

where =10,�=28,�= 8
3 . This combination of parameters leads to a system that produces

a chaotic solution with the famous butterfly pattern in state space. An adaptive Runge–Kutta
solver is used to numerically integrate the dynamical system. The initial condition for the
problem is taken to be [10,10,10]. The solution is recorded at time steps of dt=0.05 time
units. The database consists of 100 snapshots taken randomly within the time range of 1000
time steps (or 50 time units). The �t for database A is taken to be 0.05 time units.

• The 9D Lorenz model. This model describes a system of nine quadratically coupled ODEs
that exhibit chaotic behavior for a certain range of parameters. The 9D Lorenz model was
first described and derived by Reiterer et al. [58]. The equations were originally derived as
a model for the behavior of square convection cells and represent a truncated form of the
Navier–Stokes equations. The 9D Lorenz model is given by

Ċ1 = −b1C1−C2C4+b3C3C5+b4C
2
4 −b2C7

Ċ2 = C1C4+−C2+c4C5−C5C2− 1
2C9

Ċ3 = −b3C1C5−b4C2C2−b1C3+C2C4+b2C
2
8

Ċ4 = −C5C2+C2C3−C4+C4C5+ 1
2C9

Ċ5 = 1
2C

2
2 −0.5C2

4 −b5C5

Ċ6 = C9C2−C9C4−b6C6

Ċ7 = −rC1−C9C4+C8C5−b1C7+C5C8

Ċ8 = C9C2+rC3−C7C5−C5C7−b1C8

Ċ9 = −rC2+rC4+2(C4−C2)C6+C4C7−C2C8−C9

(72)

The parameters bi are associated with the geometry of the convection cells and are defined as

b1 :=4

(
1+a2

1+2a2

)
, b2 :=

(
1+2a2

2(1+a2)

)
, b3 :=2

(
1−a2

1+a2

)

b4 :=
(

a2

1+a2

)
, b5 :=8

(
a2

1+2a2

)
, b6 :=

(
4

1+2a2

)
The parameter a is a wave number parameter and is set to a=0.5. There are two additional free
parameters that dictate the behavior of the dynamical system, namely, the parameter r and .
Reiterer et al. [58] studied the variation of these parameters in detail and concluded that for
=0.5 and r�14.22 the flow exhibits a chaotic attractor. Therefore, we use these parame-
ters when generating the ensemble for deriving our models and testing their performance.
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MATLAB’s adaptive RK-4 (Runge–Kutta 4) solver is used for numerical integration. The
solution is recorded at intervals of dt=0.05 time units. The database consists of 100 snapshots
taken from a time range of 1000 time steps (or 50 time units). The �t for database A is taken
to be �t=0.05 time units.

• A 5D nonlinear model (our ‘in-house model’). This model is given by,

Ẏ1 = q1(Y2−Y1)+Y2Y3Y4

Ẏ2 = q2(Y1+Y2)−Y1Y3Y4

Ẏ3 = −q3Y3+Y1Y2Y4

Ẏ4 = −(q4+q5 sin(Y5))Y4+Y1Y2Y3

Ẏ5 = −q6Y5+Y1Y2Y3

(73)

The coefficients q1–q6 are given by q1=30, q2=10, q3=1, q4=16, q5=12, q6=7.2. The
model not only contains cubic terms, but also trigonometric functions. The identification of
such a dynamical system through nonlinear optimization would be an extremely tedious one.
This model is used to demonstrate the flexibility of the RBF models to correctly identify
the evolution of the original dynamical system. MATLAB’s adaptive RK-4 (Runge-Kutta 4)
solver is used for numerical integration. The solution is recorded at time interval of 0.01 time
units. The database consists of 150 snapshots taken from a time range of 500 time steps. The
�t for database A is taken to be 0.01 time units.

• The KS model. This model represents a solution that varies in one-dimensional space and
time. The partial differential equation describing it is

�u
�t

=−u
�u
�x

− �2u
�x2

− �4u
�x4

(74)

A solution to the above equation is sought over a domain of x ∈[0,32�] with periodic
boundary conditions. The above PDE with the periodic boundary conditions have no known
analytic solution except for the non-trivial u≡0 solution. Therefore, we seek a numerical
solution for the above problem. The periodic boundary conditions enable the use of spectral
methods to solve the problem using a Fourier decomposition. The advantage of using Fourier
modes to perform the decomposition is that the modes immediately satisfy the boundary
conditions. A total of 128 complex Fourier modes are used to solve the problem. An initial
condition given by

u(x, t=0)=cos
( x
8

)(
1+sin

( x
8

))
(75)

is chosen. Exponential time differencing with a fourth-order Runge-Kutta (ETDRK4) scheme
is used to solve the system of ODEs. This problem with the initial and boundary conditions
given above has been solved by Kassam and Trefethen [59]. We use the exact same procedure
to generate the solution to the problem. The ETDRK4 scheme used for solving this problem
has been derived and explained in detail in [59]. The KS equation is chosen as an example
because it shares two important properties with the Navier–Stokes equation. The first property
is that the low-dimensional form of the KS equation and the Navier–Stokes equations are the
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same, i.e. both equations lead to a quadratic system of ODEs. The second important property
is the dimensionality of the system. More often than not, the solutions to fluid flow problems
are high-dimensional, meaning they require a large number of degrees of freedom to correctly
describe the solution. The KS equation in this regard also represents a high-dimensional
system. Therefore, methods that work well with the low-dimensional form of the KS equation
may be expected to also work for the Navier–Stokes equations. The solution is set up such that
the integration time step is 0.01 time unit and the solution is recorded every five integration
time steps (or every 0.05 time units).
For this example, a POD analysis is first performed on an ensemble of solutions. The POD

analysis leads to a decomposition into spatial eigenfunctions w(x) and temporal coefficients
f(t). The evolution of the temporal coefficients f(t) is now described by a quadratic system of
ODEs. We are consequently interested in the evolution of the temporal coefficients, which are
found from the RBF models. Since an additional step is performed prior to the construction
of the RBF model (namely the POD analysis), we deal with this example in more detail at a
later point in this section.

As part of our initial analysis, we use the first three examples to demonstrate that the RBF
evolution models indeed represent the dynamics of the original system. To do this, we conduct
four different tests:

1. Check if the RBF evolution model correctly reproduces the phase-space portraits of the
original dynamical system.

2. Compare the Lyapunov exponents of the RBF evolution model with the original system.
3. Check the rate of divergence of the RBF evolution model with respect to the original

system.
4. Compare the time derivatives of the original system with the time derivatives of the RBF

models.

The first test is performed through visual inspection. Since the phase-space portraits of the
systems considered here have strong features, reproduction of the phase-space portraits by the RBF
model provides positive reinforcement to the method. The second and third tests can be quantified.
Note that the second and third tests are quite different. The second test determines the rate at which
trajectories that start out from almost the same initial condition diverge, whereas the third test
establishes the rate at which the RBF model diverges from the original system for the exact same
initial condition. The third test serves as a more robust test to determine if the RBF evolution models
are indeed close to the original dynamical system. Since the systems that are being considered are
chaotic, one could expect that the RBF models might diverge at a rate that is less than or equal to
the largest Lyapunov exponent of the original system. The fourth example is used to check how well
the RBF models are able to approximate the time derivatives of the original systems. One must note
that for the fourth test, there is no interpolation involved. Rather, the solutions at different time steps
are introduced into the RBF models and the resulting output (which is the time derivative for our
case) is computed and compared with the time derivative as obtained from the original dynamical
system.

We remind our readers that four different RBF models were considered. Two models each were
constructed for database A and database B, respectively. To elucidate the different models, we label
the two models formed from database A as ‘RBF-Model-A-Case1’ and ‘RBF-Model-A-Case2’.
Similarly the models formed from database B will be called ‘RBF-Model-B-Case1’ and ‘RBF
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Model-B-Case2’. To reiterate, the different models are formed as follows:

• RBF-Model-A-Case1: RBF model constructed using database A. The resulting model is a
discrete map of the continuous dynamical system as described in Section 4.2.

• RBF-Model-A-Case2: Using RBF-Model-A-Case1, a continuous dynamical system is
constructed based on the procedure outlined in Section 4.2.

• RBF-Model-B-Case1: RBF model constructed using database B using the procedure described
in Section 4.1. Resulting model is a continuous dynamical model.

• RBF-Model-B-Case2: RBF model constructed using database B. This case focuses on
constructing approximating dynamical systems that have a quadratic polynomial form. The
resulting model can be written either in a polynomial form or in an RBF form.

All the experiments were performed using a multi-quadric radial basis function as given by

�(r)=
√
1+(
·r)2 (76)

Experiments with other basis functions were also conducted with results similar to the ones
shown for the multi-quadric case. It should be noted that the multi-quadric basis function is a
conditionally positive-definite function as opposed to a strictly positive-definite function. Even so,
the interpolation properties still hold for this particular basis function. The scaling parameter 
 is
chosen based on the procedure defined in Section 5. For RBF-Model-A-Case1 and RBF-Model-B-
Case1, the procedure outlined in Section 5.2 was used and the procedure outlined in Section 5.1
was used to compute the scaling parameter for RBF-Model-B-Case2. The scaling parameter of
RBF-Model-A-Case1 was used for RBF-Model-A-Case2. Table I shows the scaling parameters
used for the different RBF evolution models.

We would like to point out that the scaling parameter for the model ‘RBF-Model-B-Case2’ for
the 5D system was not included in the table because it represents a specific case of modeling
a quadratic system of ODEs. We provide evidence later that for this particular case, the RBF
evolution model was always inherently unstable.

As mentioned earlier, our first test is to demonstrate that the RBF models are correctly able to
construct the phase-space portraits, which we shall call ‘PSP’ for the sake of brevity. The PSPs
are constructed by starting the different models at the same initial conditions. However, the time
integration for each of the examples is different. Figures 1 and 2 show the PSP comparison of
the 3D Lorenz model with the different RBF evolution models. One can easily see that the PSP
correctly follows and forms the famous ‘butterfly’ pattern of the 3D Lorenz model. The PSPs are
constructed based on the integration carried out over 40 time units (which corresponds to a total of
800 data points). It is important to note that the PSPs in Figures 1 and 2 have a jagged trajectory
as opposed to a smooth one. This is because the solutions were extracted at discrete time steps.

Table I. The scaling parameters of the RBF models for the different cases and examples.

Model type 3D Lorenz 9D Lorenz 5D system

RBF-Model-A-Case1 0.04 0.2 0.68
RBF-Model-A-Case2 0.04 0.2 0.68
RBF-Model-B-Case1 0.02 0.2 0.15
RBF-Model-B-Case2 0.02 0.5 —
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Figure 1. Phase-space portrait x1−x3 of the 3D Lorenz system for the different RBF models. Black line
denotes the reference solution. Time interval was 40 time units (800 data points).

For the 9D and the 5D Lorenz model, we perform comparisons of the PSP for a few selected
variables. For the 9D Lorenz model, we select C1,C6,C7 to construct sample phase-space portraits.
Figures 3 and 4 show the PSP for the selected variables. In order to construct the PSP, the numerical
integration was carried out for 150 time units (or 3000 data points). A longer integration time is
required for this model because the RBF models follows the reference solution quite closely for
nearly 100 time units.

Similar to the other two examples, Figures 5 and 6 show the PSP for the 5D system. For this
example, the PSP are generated based on numerical integration performed over a period of 10 time
units (or 1000 data points).

We now compare some fundamental properties of the dynamical systems. The Lyapunov expo-
nents are perhaps the most fundamental quantities associated with a dynamical system that allow
one to determine if the system is chaotic or not. Lyapunov exponents allow one to estimate the
rate at which two trajectories will diverge when their initial conditions are separated by a very
small distance. A dynamical system of dimension N has N Lyapunov exponents. Each one of
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Figure 2. Phase-space portrait x2−x3 of the 3D Lorenz system for the different RBF models. Black line
denotes the reference solution. Time interval was 40 time units (800 data points).

these exponents corresponds to the rate at which the principle axis of a N dimensional ‘sphere’
in the nth direction increases or decreases with respect to time. For a system to be considered
chaotic, one requires that at least one of the Lyapunov exponents be positive. Furthermore, when
dealing with autonomous systems, one Lyapunov exponent must always be zero. For the first three
examples, the Lyapunov exponents are given in Table II.

The method used for calculating the entire Lyapunov spectrum from the original dynamical
system is explained in detail in the work of Wolf et al. [60], Shimada and Nagashima [61], Benettin
et al. [62] and is often referred to as the ‘standard algorithm’ for computing the Lyapunov exponents.
The standard algorithm requires that the system of ODEs be at least once differentiable. In our case,
this condition is automatically met since the RBF functions are always differentiable. As a matter
of fact, the multi-quadric function being used for our case is infinitely differentiable. Therefore, we
are in a position to obtain the entire Lyapunov spectrum and compare it to the original dynamical
system. Table II gives the exponents for the different examples being considered. Further, we
also calculate the correlation dimension of the RBF evolution models and compare it to that of
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Figure 3. Phase-space portrait C1−C6 of the 9D Lorenz system for the different RBF models. Black line
denotes the reference solution. Time interval was 150 time units (3000 data points).

the original system. The correlation dimension/Lyapunov dimension are closely related to the
Lyapunov exponents of the dynamical system. The calculation of the correlation dimension from
the Lyaunov exponents is addressed by Wolf [60] and is given by

Corr. Dim= j+
∑ j

i=1 	i
|	 j+1| (77)

where 	i are the Lyapunov exponents ordered from largest to smallest and j is defined as

j∑
i=1

	i >0 and
j+1∑
i=1

	i <0 (78)

We now compare the Lyapunov exponents of the different RBF models with the original system
for the first three examples. Table III shows the exponents for the 3D Lorenz case. One can see
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Figure 4. Phase-space portrait C6−C7 of the 9D Lorenz system for the different RBF models. Black line
denotes the reference solution. Time interval was 150 time units (3000 data points).

that all the RBF evolution models show a spectrum that is quite close to the original dynamical
system. It is also interesting to note that the fourth RBF model ‘RBF-Model-B-Case2’, which
corresponds to the RBF model specific to quadratic systems seems to perform best. One can see
a similar pattern in the results for the 9D Lorenz model and the 5D system. Table IV shows the
comparison of the exponents for the 9D Lorenz case. A similar comparison of the third example,
the 5D model is tabulated in Table V. Based on the cumulative comparison of the three examples,
we find that among the four different RBF models, the RBF-Model-A-Case2 consistently seems to
have a higher positive exponent than the other RBF models. This implies that RBF-Model-A-Case2
will tend to diverge faster than the other models. However, we point out that RBF-Model-A-Case2
is constructed as an extension to RBF-Model-A-Case1 wherein we are constructing a continuous
model from a discrete RBF map using the linear multi-step methods. The linear multi-step method
contains a local truncation error that is inherently embedded into the RBF system during the
modeling phase. This error may explain the reason for the higher rate of divergence. We also
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Figure 5. Phase-space portrait Y1−Y5 of the 5D in-house system for the different RBF models. Black
line denotes the reference solution. Time interval was 10 time units (1000 data points).

point out that the results associated with the RBF-Model-B-Case2 are not presented for the 5D
in-house model as seen in Table V. This is because the 5D in-house model does not have a
quadratic polynomial structure, while the RBF-Model-B-Case2 is constructed by assuming the
original system being approximated has a quadratic polynomial form. We consistently found that
the RBF models associated with RBF-Model-B-Case2 for the 5D model example were unstable,
i.e. the solution became unbounded within a few integration time steps. As part of our analysis,
it is also imperative to get an idea of how faithfully the RBF models follow the true dynamical
systems and for how long. To do this quantitatively, we look at the ‘time horizon’ of the RBF
models, i.e. the time beyond which the prediction of the RBF models breaks down (with respect
to following the true dynamical system). We would like to point out that this is different from
looking at the largest Lyapunov exponent of the RBF models. To get the prediction time horizon,
the initial conditions for both the RBF models and the original dynamical system are the same.
Table VI tabulates the time horizon for the different RBF models for the different examples.
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Figure 6. Phase-space portrait Y2−Y3 of the 5D in-house system for the different RBF models. Black
line denotes the reference solution. Time interval was 10 time units (1000 data points).

We define the time horizon as

Time horizon=Maxt

{
1

N

N∑
i=1

|x rbfi (t)−xOrigi (t)|
|xOrigi (t)|

}
!=0.01 (79)

where xi (t), i=1,2, . . . ,N represents the signal at time t ·x rbfi represents the RBF solution and

xOrigi represents the true solution as obtained by the original dynamical system. It is important
to note that the RBF models are bound to diverge from the true solution. This is because even
though the initial conditions were perfect, the RBF model in itself is an approximation to the
original system. One can then view the RBF model in one of two ways. The first view could be
that using the RBF model is equivalent to using the original system with a slightly different initial
condition. This is bound to lead to a divergence whose rate is governed by the largest Lyapunov
exponent. The other view is to say that the RBF model now represents a dynamical system whose
parameters are slightly offset from the true/original dynamical system. For example, there exists
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Table II. Lyapunov exponents for the three test cases.

Example Lyapunov exponents

3D Lorenz system [0.905, 0, −14.55]
9D Lorenz system [0.0446, 0, −0.3943, −0.5949, −0.6193, −1.5109, −3.2776, −4.4920, −4.4964]
5D system [3.2495, 0, −3.9166, −14.2000, −28.6552]

Table III. Comparison of the Lyapunov exponents and the correlation
dimension of the different RBF models for the 3D Lorenz model.

Model Lyapunov exponents Corr. dim.
3D Lorenz 0.905, 0, −14.55 2.01

RBF-Model-A-Case1 0.8939, −0.0012, −14.7138 2.06
RBF-Model-A-Case2 0.9385, 0.0064, −14.3660 2.07
RBF-Model-B-Case1 0.9076, −0.0010, −14.5802 2.07
RBF-Model-B-Case2 0.9060, −0.0005, −14.5800 2.03

Table IV. Comparison of the Lyapunov exponents and the correlation dimension of the different RBF
models for the 9D Lorenz model.

Model Lyapunov exponents Corr. dim.

9D Lorenz 0.0446, 0, −0.3943, −0.5949, −0.6193, 2.10
−1.5109, −3.2776, −4.4920, −4.4964

RBF-Model-A-Case1 0.0461, 0.0003, −0.3700, −0.6020, −0.6374, 2.14
−0.7473, −1.1194, −1.8186, −2.0960

RBF-Model-A-Case2 0.0504, 0.0029, −0.3580, −0.6369, −0.6748, 2.15
−0.8716, −1.0056, −1.9578, −2.7408

RBF-Model-B-Case1 0.0451, 0.0003, −0.3845, −0.5763, −0.6417, 2.2
−0.8329, −1.2450, −1.7521, −1.9524

RBF-Model-B-Case2 0.0450, −0.0001, −0.3576, −0.6217, −0.6417, 2.07
−0.9321, −1.1935, −2.0310, −3.2541

three parameters ,�,� that need to be defined for the 3D Lorenz model as given in (71). The
RBF models could then be seen to represent a dynamical system for which perhaps one (or all)
parameters ,�,� are given by ̃=+�, �̃=�+��, �̃=�+��. In such a case, one again finds
that starting from the same initial conditions, the original dynamical system and the modified
dynamical system will diverge after some time. Nonetheless, these RBF models can be very useful
when doing short-term prediction and their capabilities can easily be enhanced by suitably coupling
them with measurement models through nonlinear Kalman filters.

Typical results associated with the RBF models for the time series also demonstrate that the
RBF evolution models are indeed robust. Figure 7 shows a sample time series of the different RBF
models to the reference time series (as indicated in black). It is again clear that RBF-Model-A-Case1
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Table V. Comparison of the Lyapunov exponents and the correlation dimension of the different RBF
models for the 5D Lorenz model. –**– indicates that the RBF model was unstable.

Model Lyapunov exponents Corr. dim.

5D system 3.2495, 0, −3.9166, −14.2000, −28.6552 2.80
RBF-Model-A-Case1 3.2109, 0.0016, −4.2289, −15.4800, −27.3040 2.76
RBF-Model-A-Case2 3.3593, 0.0054, −3.8367, −13.4831, −27.3766 2.89
RBF-Model-B-Case1 3.2442, 0.0014, −3.9819, −14.5370, −28.9859 2.75
RBF-Model-B-Case2 – ** – – ** –

Table VI. The time horizon (in time units) of different RBF models for
the different examples.

Model type 3D Lorenz 9D Lorenz 5D system

RBF-Model-A-Case1 ≈5 ≈100 ≈2
RBF-Model-A-Case2 ≈3 ≈75 ≈1
RBF-Model-B-Case1 ≈5 ≈100 ≈2
RBF-Model-B-Case2 ≈7 ≈100 –** –

The time horizon represents the time when the relative error between the
RBF solution and the original solution is 1%.

and RBF-Model-B-Case1 do indeed perform quite well. Similar results are seen in Figures 8 and 9.
Figure 8 shows the time series for the 9D Lorenz model while Figure 9 presents the time series
plots for the 5D system.

We now look at our final test to establish that the RBF models are indeed good representations
of the original dynamical system. We study the capability of the RBF models to correctly predict
the time derivatives of the multivariate signals. The RBF models are provided with the value of
the signals that lie on the attractor and compute the time derivative of the signals at that instance
in time. These results are compared with the time derivatives computed from the original systems.
The average error between the RBF models and the true solution is compared on an ensemble of
data. The error is computed as

Error=
〈
1

N

N∑
i=1

|ẋ rbfi (t)− ẋOrigi (t)|
|ẋOrigi (t)|

〉
(80)

where ẋ rbfi represents the RBF solution and ẋOrigi represents the time derivatives as obtained by
the RBF model and the original dynamical system. 〈〉 represents an ensemble average taken over
arbitrary instances in time. These results are tabulated for the different RBF models and different
examples in Table VII. It is interesting to note that all the models produce an accurate approximation
to the true time derivatives. Studying the errors in Table VII, it is interesting to see that the RBF
models RBF-Model-B-Case1 and RBF-Model-B-Case2 are superior to the former two models.
This result is easily explained based on the fact that these models are created with the assumption
that the time derivatives are already known at certain instances in time along with the signal
itself. We also recall that the comparison of the time derivative for the RBF model RBF-Model-
A-Case1 does not apply since this model is a discrete evolution map. However, its extension,
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Figure 7. Time series of X1 of the 3D Lorenz system for the different RBF models.
Black line denotes the reference solution.

RBF-Model-A-Case2 is seen to produce very good approximations to the time derivatives with an
average error of around 0.1% for all the examples. For the two quadratic system considered (the
3D Lorenz and the 9D Lorenz), we find that models associated with RBF-Model-B-Case2 give the
best results. It is also seen that for the 3D Lorenz case, an error very close to machine precision
is obtained.

To summarize, we performed four different tests on three different examples to get a quantitative
answer to whether the RBF evolution models were suitable candidates to modeling chaotic nonlinear
dynamical systems given only sparse time series information. Based on the four tests, one can
conclude that the models are not only valid, but robust and do represent the dynamics of the
original system.

As a final example, we now apply the RBF evolution model to approximate the KS equation.
The details of the KS equation and the procedure for computing the numerical solution were
discussed in the earlier part of this section. Figure 10 shows a sample solution obtained by the
Fourier-spectral method. The spatio-temporal chaos in the solution is seen in the form of different
‘waves’ splitting and merging at different instances in time and space. Before proceeding to the
construction of the RBF evolution model, we perform a POD decomposition on the solution of
KS equation. The POD analysis decomposes the solution into a set of spatial functions �(x) and
corresponding to each of these functions there exists a coefficient �(t), which depends only on
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Figure 8. Time series of C1 of the 9D Lorenz system for the different RBF models. Black
line denotes the reference solution.

time. The details of the POD analysis are discussed in Section 2 of this paper. Once the POD
analysis is done, the original KS equation, which is given by

�u
�t

=−u
�u
�x

− �2u
�x2

− �4u
�x4

is converted to a system of ODEs by projecting the above equation onto the POD basis functions
�(x). The system of ODEs is given by

d�k
dt

=
N∑
i=1

N∑
j=1

Hki j�i� j +
N∑
i=1

Gk j � j , k=1,2, . . . ,N (81)

where the elements of H and G are given by

Hki j = −
∫

�k ·
(

�i ·
d� j

dx

)
dx

Gk j = −
∫

�k ·
(
d2� j

dx2
+ d4� j

dx4

)
dx

(82)
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Figure 9. Time series of Y1 of the 5D system for the different RBF models. Black line
denotes the reference solution.

Table VII. Error associated with time derivatives as computed by using RBF evolution models.

Example RBF-Model-A-Case1 RBF-Model-A-Case2 RBF-Model-B-Case1 RBF-Model-B-Case2

3D Lorenz –NA– 4.2656×10−3 1.3393×10−10 ≈10−16

9D Lorenz –NA– 1.8136×10−5 1.6612×10−6 8.4253×10−9

5D Lorenz –NA– 4.4281×10−3 3.7020×10−5 – ** –

The error is computed using (80). –**– indicates that we could not find a stable RBF model for the
specified case. –NA– indicates not applicable.

It can now be seen that the solution of the KS equation can be found by solving a quadratic
system of ODEs. The POD analysis requires an initial ensemble on which the decomposition
is performed to extract the basis functions. The initial ensemble is obtained from the spectral
solution. It is important to note that since this equation does not have a closed-form solution, we
use the spectral solution as our reference solution. The initial ensemble consists of 1000 snapshots
taken at an interval of 1 time unit. Figure 11 shows the eigenvalue plot for the POD modes.
By requiring that a minimum of 99% of energy is captured, we find that the 75 POD modes
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Figure 10. Solution of the KS equation as computed using Fourier-spectral method.
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Figure 11. POD eigenvalues of the KS equation.

satisfy this condition. Therefore, the approximation to the solution is truncated to 75 modes. The
approximation is given by

u(x, t)=
i=75∑
i=1

�i (t)�i (x) (83)
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Figure 12. Mean-squared reconstruction error E(N ) as computed using (85)
for POD modes and Fourier modes.

It is important to note that our analysis reveals that the POD analysis does not recover the Fourier
modes as the spatial eigenfunctions. To explain this, we first note that the POD eigenfunctions are
Fourier modes only if the correlation matrix is

R(x,x′)=R(x−x′)=R(r)=
K∑

k=−K
cke

i�k(x−x′) (84)

From the theory of POD, one can show that if the equations are translationally invariant and the
solution satisfies periodic boundary conditions, then the optimal modes must be Fourier modes.
However, for a limited ensemble spanning a finite time period, one can intuitively expect that a
different set of basis functions might provide a better representation of the ensemble. To demonstrate
this, one can look at the mean-squared error associated with the reconstruction of the initial
ensemble, as given by

E(N )= 1

P

P∑
p=1

(
u(x, tp)−

N∑
n=1

an(tp),�n(x)

)2
(85)

where an/�n(x) could be the Fourier coefficients/Fourier modes or POD coefficients/POD modes.
Figure 12 shows the error associated with the number of terms used for reconstruction when
Fourier modes and POD modes are used. It can clearly be seen that the POD modes have a smaller
reconstruction error as compared with the Fourier expansion. However, the difference in error is
seen to be small. One can expect that if the ensemble was extremely large, then the POD modes
would indeed converge to Fourier modes. For the purpose of this paper, the POD eigenfunctions
are always used to perform any and all analysis for the KS solution.

The evolution Equation (81) for the coefficients now represents a low-order model of the original
system. One must note that the higher-order modes, i.e. modes with indices greater than 75 are
now neglected based on the assumption that they contribute little to the overall dynamics of the
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system. However, neglecting the higher-order modes could render the system of ODEs unstable.
Eddy-viscosity type models have been suggested to model the unresolved modes and stabilize the
system. These procedures have been elaborated in the work of Noack et al. [15], Rempfer and
Fasel [12], Sirisup and Karniadakis [17] and others. For our case, we apply a simple modification
to the eddy-viscosity model, as proposed by Rempfer and Fasel [12], to account for the unresolved
modes. An additional linear term is added as a damping term. The new equation now looks as

d�k
dt

=
N∑
i=1

N∑
j=1

Hki j�i� j +
N∑
i=1

(Gk j +Dk j )� j (86)

where the termD is the additional damping term. To obtain the elements of the matrixD, we apply
the above equation to the coefficients obtained within the ensemble, i.e. we set �k(t)=�ENk (t),
k=1,2, . . . ,N and multiply both sides of the equation with �ENm (t) and integrate over the ensemble
time. This gives an explicit relation to the matrix D as

Dkm = 1

ϑm

(〈
d�ENk
dt

,�ENm

〉
−

N∑
i=1

N∑
j=1

Hki j 〈�ENi �ENj ,�ENm 〉−Gkm

)
(87)

where ϑ j are the eigenvalues associated with the POD eigenfunctions. We would like to point
out that this procedure is equivalent to computing the linear terms in (81) using a least-squares
method. The POD-Galerkin model for the KS equation is now given by (86).

We now turn our attention to the RBF evolution model. As before, we can consider two different
scenarios. The two scenarios represent the way the input–output data is available. These scenarios
were elaborated in detail in the beginning of this section. Database A corresponds to a case where
the input/output is given by (f(t)/f(t+�t)) and database B presents input/output as (f(t)/ḟ(t)).
We construct an RBF evolution model for each of these databases and compare our results with the
Fourier-spectral solution (also considered as reference solution) and POD-Galerkin solution. For
database A, we construct a discrete evolution map (which we shall call ‘RBF-Model-Discrete’)
and for database B we construct a general RBF-evolution map (which we shall call ‘RBF-Model-
Continuous’). The �t for database A is taken to be 0.01 time units. The input parameters in the
database are taken to be the POD coefficients obtained from the initial ensemble. This corresponds
to the database consisting of 2000 ‘snapshots’ (please refer to the beginning of the section on how
‘snapshots’, ‘database’ are defined and the explanation of other notations).

All solutions for the RBF evolution and the POD-Galerkin models are performed outside the
initial ensemble used for construction of the model or the construction of the POD modes. As a
first test for this example, we first check to see if the different POD coefficients f(t) as obtained by
the different RBF models have a standard deviation that is consistent with the reference solutions.
Since each POD coefficient carry the information about the amount of energy present in each of
the POD basis functions/modes �(x), the standard deviations provide an envelope in which the
solutions should lie for any coefficients and hence have a certain amount of energy. Figure 13 shows
the standard deviations of the 75 POD modes as obtained from the two RBF models considered.
It is clearly visible that both the models have standard deviations quite close to the reference
solution. This result indicates that, on average, the RBF models are able to distinguish the amount
of energy present in the different scales of motion. We finally compare the solutions as obtained
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Figure 13. Standard deviations of the two RBF models as compared with the reference solution.

by the RBF models to the reference solution. This is done in two parts. We first compare the time
series of the POD coefficients over a period of 100 time units. Figure 14 shows the comparison
of the reference solution to the discrete RBF model and the time series for the continuous RBF
model is seen in Figure 15. It is seen from Figures 14 and 15 that the solution diverges quickly
to a different trajectory. The time horizon for the divergence is computed to be approximately
2 time units for both the models, indicating that the models represent good approximations only
for a short time horizon. The divergence of the solution is not completely unexpected. The solution
of the original system (KS equation) represents deterministic chaos. Combining with the fact
that the POD-Galerkin system of ODEs representing the original system is also high dimensional
(75-dimensional system), one is dealing with a system that is quite sensitive to small perturbations
in the system. The POD-Galerkin system already represents an approximation to the original KS
equation, i.e. there exists a truncation error with respect to the number of modes used and modeling
error associated with accounting for the unresolved POD modes. Therefore, the POD-Galerkin
system will also diverge to a different solution after finite time steps. Since the RBF systems
represent models that approximate the original POD-Galerkin system, one should expect that the
RBF systems will diverge much faster than the POD-Galerkin system.

However, despite the rapid divergence of the solution, when one compares the spatio-temporal
solution of the different RBF models with the reference solution, one sees that the overall solution
obtained by the models still reflects the structures seen in the true/reference solutions. Figure 16
shows a comparison of the different RBF models. One can see that the long meandering structure
that the true solution exhibits is also seen in the two RBF models. The merging and splitting
features of the meandering structures are also clearly visible in the two RBF models. Further, if
one looks at the beginning of the time series, one sees that the structures start out similar to one
another and then diverge out to different solutions. This result, therefore, indicates that the RBF
models are able to recognize the underlying dynamics of the KS equation.
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Figure 14. Comparison of the time series of the first nine POD coefficients for the discrete RBF evolution
map with the reference solution. Solid line is the reference solution.

7. CONCLUSIONS

This paper has explored the idea of using global radial basis functions (RBFs) in the construction
of nonlinear dynamical systems. Although RBFs have been used in the form of neural networks,
the method has essentially remained a black-box technique, which restricted the usage of RBFs to
just time series prediction and rendered it ineffective at analyzing the dynamical system itself. This
paper approaches the use of RBFs from the perspective of constructing dynamical systems, discrete
and continuous, based on time series data available from the original dynamical system. Based on
the type of data available, two different databases were constructed. Database A designates cases
when pairs of discrete time series data were given. Database B denotes cases when the time series
and its time derivatives were given.

Based on database A, it was shown that one could construct a discrete RBF evolution map. The
map uses the coefficients at a particular instance in time t and outputs the value of the series at
time t+�t , where �t is the time separation between the pairs of data in database A. Based on the
discrete RBF evolution map and linear multi-step methods, a method was developed that allows
us to produce a continuous dynamical systems model from discrete data, i.e. database A. The
discrete evolution map was labeled ‘RBF-Model-A-Case1’ and ‘RBF-Model-A-Case2’ for the two
cases, respectively. Similarly for database B, two different methods were described that allow us to
construct continuous RBF systems, i.e. the model is given the value of the multivariate coefficients
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Figure 15. Comparison of the time series of the first nine POD coefficients for the continuous RBF model
with the reference solution. Solid line is the reference solution.

at time t and it outputs the time derivatives of the coefficients at time t . The RBF system can be
treated as any system of ODEs and numerically integrated to get the value of the coefficients at
different instances in time. The first method for database B constructs a RBF evolution model that
can be used, in principle, for approximating any nonlinear dynamical system. This evolution model
was labeled ‘RBF-Model-B-Case1’. The second method allows one to approximate dynamical
systems that have a quadratic polynomial form. This type of model is of particular importance
for us, since our motivation is to construct dynamical systems that arise from the Navier–Stokes
equations. The RBF model of this type was labeled ‘RBF-Model-B-Case2’.

In order to demonstrate the different RBF models, three examples were considered. The three
examples consist of systems of ODEs that exhibited chaotic behavior. The 3D Lorenz model, the
9D Lorenz model and a 5D in-house model. Four different comparison criteria were considered
for the RBF models. The first test was to check if the RBF models were able to construct the
phase-space portraits of the original dynamical systems. It was shown that all models performed
extremely well for phase-space reconstruction. The second test was to compare the Lyapunov
spectrum of the RBF systems with that of the original system. It was seen for this test that all
the models had Lyapunov spectra that were close to the original dynamical system. The largest
Lyapunov exponent and the correlation dimensions of the different models were also found to
be consistent with the reference system. The third test compared the error associated with the
RBF models when computing the time derivatives of the time series coefficients. For this case,
RBF-Model-A-Case1 was not part of the test analysis since it is a discrete evolution map. However,
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Figure 16. (a) Actual KS solution; (b) solution from POD-Galerkin model; (c) solution from the discrete
RBF evolution map; and (d) solution from the continuous RBF evolution model.

it was shown that all the RBF models had an average approximation error of the order of 0.1%. For
the fourth test, the time horizon over which the RBF models faithfully followed the true system
was computed. It was seen that the models diverged at a rate comparable with the largest Lyapunov
exponent. Overall, the combination of the four different tests confirmed that the RBF models were
indeed dynamically consistent models.

To demonstrate the use of the RBF models for capturing spatio-temporal chaos, the KS equation
was considered as a candidate example. This example was chosen because the low-dimensional
model formed by the partial differential equation has the same quadratic polynomial form as the
low-dimensional form of the Navier–Stokes equations. A Fourier-spectral decomposition with 256
modes (128 complex modes) was used to solve the problem and this solution was treated as the
reference solution. For this case, before the RBF models were constructed, a POD analysis was first
performed on the KS solution. This yielded a low-dimensional model that required 75 terms for
approximating the solution. The POD analysis decomposes the flow into a set of spatial functions
and corresponding to each function is a temporal coefficient, which is a function of time only.
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RBF models were then constructed to model the evolution of the POD temporal coefficients. For
this case, two different RBF models were constructed, a discrete evolution map and a continuous
dynamical system. The standard deviations of the coefficients were compared with the reference
solution. The results showed very good agreement with the reference. Time series comparison of
the two models with respect to the reference solution were also shown for 2000 time steps. It was
observed that the RBF models diverged to a different solution at a very rapid rate. The computed
time horizon for the RBF models was found to be approximately 2 time units. However, when the
entire spatio-temporal solution was constructed, it was observed that the underlying dynamics of
the system were very well represented by both RBF models.

Details on how to compute the optimal scaling parameters for the different RBF models were
also discussed and the different scaling parameters used for the different examples and models
were tabulated. Based on the four different examples, and the different tests performed, the use of
RBF to model continuous dynamical system can be considered a valid procedure. The advantages
of using RBF models to approximate any nonlinear multivariate dynamical system are clear.
Further, based on the methods discussed in this paper, one can construct continuous dynamical
systems irrespective of the form in which the data are available. Special attention was paid to the
idea of constructing RBF models that represent quadratic systems of ODEs. One of the primary
motivations for developing these types of models was to introduce an alternative to the traditional
Galerkin approach of constructing dynamical systems. When dealing with several hundred modes,
the lower computational cost associated with the RBF models when compared with the Galerkin
approach represents an attractive feature.
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